[Contribution No. 12 from the Thermodynamics Laboratory of the Petroleum Experiment Station, Bureau of Mines, Bartlesville, Okla.]

Low Temperature Thermal Data on Eight $\mathrm{C}_{8} \mathrm{H}_{16}$ Alkylcyclohexanes

By Hugh M. Huffman, Samuel S. Todd and George D. Oliver ${ }^{1}$

In continuation of the program of the Bureau of Mines, ${ }^{2}$ to investigate the thermodynamic properties of petroleum hydrocarbons and related substances, low-temperature thermal studies have been made on eight $\mathrm{C}_{8} \mathrm{H}_{18}$ alkylcyclohexanes over the temperature range 12 to $300^{\circ} \mathrm{K}$. This investigation of a group of isomers represents one of the most comprehensive studies of isomers yet made in the field of low temperature calorinetry. A number of interesting and unusual phenomena were observed which will be discussed. Insofar as the authors are aware this is the first published work on the low temperature heat capacity of these substances.

Experimental

The Materials.--The materials used in this investigation were API-NBS "best" samples prepared by the A.P.I. Research Project 6 at the National Bureau of Standards ${ }^{3}$ and certified by them in regard to their purity.

The Apparatus.--The measurements were made in the apparatus described by Ruehrwein and Huffman. ${ }^{4}$ Very briefly, the method is as follows: About 0.4 mole of the material under investigation was contained in a sealed copper calorimeter, which was mounted in the adiabatic calorimetric system. A measured amount of electrical energy was supplied to the calorimeter, and at all times the temperature of the environment was maintained at that of the calorimeter to prevent heat interchange. The initial and final temperatures of the calorimeter were measured by means of a platinum resistance thermometer. The electrical measurements required for determining the resistance of the thermometer and for the electrical energy were made on a "White" double potentioneter in conjunction with a high-sensitivity galva-
(1) Present address: Cabide and Carbon Chemical Corporation, Oak Ridge, Tennessee.
(2) Knowlton and Huffman, This Jovrnal, 66, 1492 (1044).
(3) These samples of API-NBS hydrocarbons have been made a vailable by the American Petroleum Institute and the National Bureau of Standards through the A. P. I. Research Project 44 on the "Collection, analysis, and calculation of data on the properties of hydrocarbons." The samples were purified at the National Barean of Standards by the A. P. R. Research Project 6 on the "Analysis, purfication and properties of hydrocarbons," under the supervision of Frederick D. Rossini, from material supplied by the following faboratories:
Ethylcyclohexane, cis-l,3-dimethyicyclohexane, irans-1,3-dimethylcylohexane, 1,1-dimethylcyclohexane, cis-1,2-dimethylcyclohexane and trans-1,2-dimethylcyclohexame, by the A. P. 1. Research Project 45 on the "Synthesis and properties of bydrocarbons of low molecular weight" at the Ohio State Thiversity, under supervision of Cecil 1 . Boord.
cis-1.4-Dimethylyclohexane and trans-1,4-dimethylcyclohexame, by the Standard Oii Development CO., Elizabeth, N. I. through the courtesy of W. J. Sweeney.

nometer and accurately calibrated resistances. The potential was in terms of a bank of six saturated cadmium cells, which had been certified by the National Bureau of Standards. Time measurements were made with an electric stopclock driven by alternating current, the frequency of which was controlled with an accuracy of 0.001%. The precision of the measurements was, in general, better than 0.1%; and above $30^{\circ} \mathrm{K}$., it is believed that the accuracy uncertainty, unless otherwise stated, should not be greater than 0.2%. The energy measurements were made in terms of the international joule and were converted to calories by dividing by 4.1833 .
Melting-point studies were made on all of these compounds as a part of the routine measurements and the results are summarized in Table I. It should be borne in mind that the equilibrium temperatures given correspond to triple points since the material in all cases was sealed in the calorimeter under its own vapor pressure. Three of these

Table I
$\mathrm{C}_{8} \mathrm{H}_{46}$ Alkylcyc1.ohexane Melting Point Summary Ethylcyclohexane

$\%$ ha.	$T_{\text {obs. }}$	$T_{\text {caled. }}$
16.86	161.8315	161.8279
41.37	$.8354^{6}$.8354
71.32	.8375	.8376
70.37	$.8382^{a}$.8382
100.0		.8385
Pure		161.8406

$N_{s}=0.0382 \Delta T$
Impurity $=0.008 \pm 0.004$ mole $\%$
1.1-Dinethylcyclohexane

24.3	239.393	239.158
40.0	.491	.414
53.7	.540	.513
76.4	$.603^{a}$.603
79.2	.604	.611
92.0	$.638^{a}$.638
100.0		.652
Pure		239.811

$\lambda_{x}=0.00423 \Delta 7$
inpurity $=0.07 * 0.03$ mole $\%$
cis-1,2-Dimethylcyclohexane

8.3	223.2257	223.1420
37.9	$.2483^{a}$.2483
70.6	.2618	.2621
88.5	$.2654^{a}$.2654
100.0	.2668	228.278
Pure		
$N_{x}=0.00397 \Delta T$		
Impurity $=0.0045 \pm 0.002$ mole $\%$		

Table I (Continued)

Table I (Continued)		
\% liq.	$T_{\text {obs. }}$	$T_{\text {oalod. }}$
trans-1,2-Dimethylcyclohexane (I)		
17.8	184.9546	184.9470
47.6	$.9762^{a}$.9762
71.5	$.9817^{a}$.9820
91.4	.9848	.9845
100.0		.9853
Pure		184.994

$N_{\mathbf{x}}=0.0368 \Delta T$
Impurity $=0.030 \neq 0.005$ mole $\%$

	II	
16.6	184.9515	184.9423
45.6	$.9713^{a}$.9707
68.8	.9767	.9769
88.1	$.9793^{a}$.9793
100.0		.9804
Pure		184.988
Impurity $=0.028 \pm 0.005$ mole $\%$		

trans-1,3-Dimethylcyclohexane

18.2	182.929	182.920
39.2	$.997^{a}$.997
66.6	183.023	183.024
85.5	$.033^{a}$.033
100.0		.037
Pure		183.063

$N_{\mathrm{x}}=0.0354 \Delta T$
Impurity $=0.090=0.010$ mole $\%$
cis-1,3-Dimethylcyclohexane

16.78	197.5565^{a}	197.5565
38.99	.5778	.5774
68.63	.5845	.5842
90.85	$.5864^{a}$.5864
100.0		.5870
Pure		197.593

$N_{\mathbf{x}}=0.0333 \Delta T$
1mpurity $=0.021 \pm 0.005$ mole $\%$ cis-1,4-Dimethylcyclohexane

19.08	185.6916	185.6871
45.50	$.7138^{a}$.7138
69.72	.7205	.7204
91.73	$.7235^{a}$.7235
100.0		.7243
Pure		185.733

$N_{\mathrm{x}}=0.0324 \Delta T$
Impurity $=0.028 \pm 0.005$ mole $\%$
trans-1,4-Dimethylcyclohexane

2.79	236.126^{a}	236.126
12.28	.197	.196
37.53	.209	.210
66.47	.212	.213
88.70	$.214^{a}$.214
100.00		.215
Pure		236.217

$$
N_{\mathrm{x}}=0.026 \Delta T
$$

Impurity $=0.007 \pm 0.005$ mole $\%$
a Calculations based on these experimental points.
compounds have small cryoscopic constants, and consequently the triple points may be expected to differ significantly from the melting points which are observed when the liquid materials are saturated with air at atmospheric pressure.

In the case of ethylcyclohexane, which has a low cryoscopic constant, the melting point study was repeated several times to test the precision of the measurements. The results of this study are shown in Fig. 1 which is a plot of T against $1 / F$, where T is the absolute temperature and F is the fraction melted. The extreme experimental difference is seen to be slightly greater than 0.002° but in any single series of measurements the precision of measurement is much better than this. In addition to the melting point measurements a single freezing-point ${ }^{5}$ measurement was made. This point was approximately 0.015° below the melting-point curves. These data tend to confirm the hypotheses that equilibrium temperatures may be a resultant of the way the material is treated and not necessarily a true equilibrium.

Fig. 1.-Melting point curves for ethylcyclohexane.
In the case of trans-1,2-, trans-1,3- and trans-1,4dimethylcyclohexane there is some uncertainty in the melting points for pure material and for the mole fraction of impurity in the sample because in none of these materials was it possible to obtain an unambiguous value for the heat of fusion. The uncertainty due to this factor will not be very great in the absolute sense.

Results

The experimentally determined heat capacities are given in Table II. In Table III are listed specific heat data at integral temperatures as selected from a smooth curve drawn through all of the data. The specific heat data for crystalline trans-1,3-dimethylcyclohexane may be less accurate than that of the other compounds for reasons which will be discussed later.

The molal heats of fusion of these compounds are given in Table IV. The uncertainties given are in all cases precision uncertain-
(5) Freezing point means the equilibrium was approached after crystallizing a portion of the material rather than melting.

Table II
The Molal Heat Capacity of the $\mathrm{C}_{8} \mathrm{H}_{16}$ Alkylcyclohexanes

$0^{\circ} \mathrm{C} .=273.16^{\circ} \mathrm{K}$, mol, wt. $=112.208$					
$T,{ }^{\circ} \mathrm{K}$.	ΔT^{*}	$\begin{gathered} C_{p} \\ \begin{array}{c} \text { cai. } \\ \text { deg. } \end{array} \end{gathered}$		ΔT	$\underset{\substack{c_{p} \text { cal. } \\ \text { deg. } .^{-1}}}{ }$
Ethylcyclohexane					
12.00	1.512	1.116	123.73	8.568	21.599
12.61	1.989	1.270	131.86	8.930	22.670
13.79	2.153	1.559	132.55	9.066	22.739
15.11	3.057	1.915	140.59	8.535	23.807
18.34	3.468	2.819	141.41	8.661	23.854
19.73	2.995	3.233	148.15	6.577	24.808
21.72	3.317	3.828	149.91	8.328	24.936
23.09	3.724	4.221	154.63	6.380	25.693
25.56	4.357	4.955		Liquid	
26.95	3.993	5.353	167.35	6.223	39.125
30.38	5.288	6.280	171.66	6.278	39.409
31.01	4.110	6.450	174.55	8.188	39.542
3590	5.758	7.688	179.95	10.309	39.922
41.76	5.953	9.025	183.18	9.073	40.090
47.74	6.021	10.281	192.68	9.910	40.740
53.80	6.081	11.461	193.07	9.877	40.724
55.24	5.142	11.721	202.86	9.699	41.434
59.92	6.158	12.558	212.95	10.480	42.199
60.90	6.172	12.696	223.34	10.286	43.052
67.45	6.930	13.767	233.53	10.095	43.934
74.84	7.848	14.872	243.98	10.797	44.885
82.78	8.025	16.078	254.66	10.578	45.929
90.90	8.219	17.255	265.13	10.360	46.986
98.86	7.702	18.313	270,92	6.847	47.566
103.87	6.261	18.985	275.38	10.161	48.073
106.88	8.341	19.370	279.40	10.098	48.490
110.00	5.990	19.790	285.46	9.975	49.176
115.00	7.900	20.417	289.39	9.887	49.611
115.44	8.007	20.486	295.34	9.773	50.302
123.1 .7	8.442	21.530	299.19	9.715	50.746

1,1-Dimethylcyclohexane

Crystals I					121.45
9.470	20.878				
12.31	1.533	1.051	131.04	9.723	22.281
14.10	2.110	1.512	141.61	11.410	23.909
15.15	3.484	1.812	Crystals II		
16.25	2.229	2.128	154.15	7.027	33.286
18.94	3.164	2.949	165.61	11.175	34.350
18.98	4.204	2.957	176.64	10.876	35.258
22.73	4.423	4.129	187.37	10.591	36.167
23.98	6.838	4.479	190.04	64.737	36.462
27.13	4.374	5.375	197.84	10.350	37.091
29.97	6.139	6.115	208.07	10.098	38.084
31.32	4.866	6.449	216.88	29.411	38.953
31.67	4.701	6.528	218.05	9.860	39.090
36.55	7.009	7.637	226.07	7.328	39.988
36.88	6.229	7.695	227.79	9.672	40.123
42.88	5.778	8.856	228.35	6.529	40.230
43.46	6.802	8.964	230.80	10.132	40.473
48.76	5.970	9.894	232.62	5.767	40.733
50.66	7.611	10.199		Liquid	
55.21	6.944	10.936	242.74	5.279	44.094
58.16	7.362	11.405	246.71	5.359	44.483
61.76	6.163	11.974	249.32	5.273	44.712
65.52	9.038	12.548	250.57	10.393	44.823

67.66	5.617	12.890	260.69	10.141	45.868
75.69	11.298	14.057	260.86	10.172	45.908
86.97	5.229	15.821	270.72	9.926	46.914
87.49	12.303	15.866	270.92	9.951	46.982
94.27	9.365	16.885	279.75	8.128	47.902
101.05	14.815	17.852	280.78	9.767	48.028
103.28	8.663	18.186	287.81	7.989	48.828
112.16	9.100	19.508	295.73	7.859	49.708
118.81	20.714	20.475	303.53	7.732	50.664

cis-1,2-Dimethylcyclohexane

Crystals I		136.27	15.200	23.082			
11.92	1.740	0.873	141.66	10.638	23.654		
13.63	1.768	1.283	142.62	9.236	23.686		
13.69	1.733	1.308	147.02	6.037	24.378		
15.55	2.115	1.777	151.07	10.115	24.944		
16.68	4.253	2.088	151.67	8.844	25.007		
18.33	3.457	2.560	151.93	16.116	25.007		
20.60	3.589	3.241	153.72	7.400	25.284		
21.68	3.252	3.560	160.93	7.036	26.331		
24.88	3.152	4.487	167.87	6.860	27.449		
25.11	5.438	4.552					Crystals II
28.24	3.569	5.409	175.48	8.811	37.185		
30.33	4.993	5.968	182.98	10.396	37.514		
32.12	4.174	6.407	183.70	9.678	37.533		
35.23	4.804	7.164	184.23	8.699	37.569		
40.60	5.929	8.334	185.69	5.727	37.700		
46.57	5.994	9.512	187.30	18.926	37.797		
52.18	5.241	10.549	193.28	9.489	38.241		
54.89	4.131	11.021	194.42	12.017	38.314		
57.91	6.217	11.552	202.68	9.309	38.977		
59.96	5.997	11.894	205.84	10.832	39.223		
65.06	6.863	12.742	211.90	9.134	39.727		
65.68	5.438	12.863	215.69	8.856	40.030		
71.52	6.245	13.777		Liquid			
71.60	6.228	13.795	228.30	4.960	43.480		
77.59	5.752	14.767	233.46	8.379	43.934		
77.66	6.147	14.769	234.36	8.157	44.065		
82.94	4.940	15.597	241.59	9.896	44.704		
84.04	6.513	15.777	243.75	9.639	44.767		
38.51	6.199	16.469	252.40	9.713	45.569		
90.72	6.841	16.783	254.08	11.022	45.736		
95.25	7.279	17.446	262.02	9.534	46.514		
97.71	7.141	17.786	264.98	10.777	46.802		
102.98	8.188	18.551	271.46	9.352	47.423		
105.31	8.052	18.875	275.66	10.597	47.849		
113.88	9.099	20.058	280.74	9.201	48.361		
123.55	10.242	21.403	286.50	11.098	48.982		
124.63	5.116	21.497	289.86	9.043	49.317		
131.28	8.185	22.442	297.48	10.865	50.168		
133.97	8.066	22.735	298.82	8.879	50.333		
		Unstable crystals II					
12.19	1.029	1.496	77.58	8.450	15.480		
13.32	1.259	1.828	81.03	5.242	16.313		
13.73	1.163	1.973	83.97	7.670	16.830		
14.91	1.976	2.308	85.12	5.041	17.216		
15.77	2.919	2.588	85.85	6.129	17.425		
17.36	2.933	3.063	86.38	3.903	17.525		
18.90	3.333	3.549	90.39	3.550	18.825		
20.61	3.585	4.090	91.81	5.791	20.376		
22.96	4.803	4.795	92.78	1.239	21.693		

Table II (Continued)					
T, ${ }^{\circ} \mathrm{K}$.	ΔT	$\begin{gathered} C_{p} \\ \text { cal. } \\ \text { deg. } \end{gathered}$	T, ${ }^{\circ} \mathrm{K}$.	ΔT	$\underset{\substack{C_{p} \\ \text { cal. } \\ \text { deg. }}}{-1}$
24.33	3.855	5.179	92.88	2.426	23.584
27.85	4.962	6.143	93.97	1.136	26.911
28.05	3.579	6.200	94.57	0.946	33.884
32.09	4.482	7.187	95.56	1.033	33.302
33.09	5.518	7.420	97.41	5.411	32.787
38.76	5.818	8.647	100.30	3.790	33.247
44.63	5.927	9.770	102.77	5.297	33.226
50.60	6.012	10.841	107.29	10.208	33.404
55.22	4.710	11.666	108.90	6.960	33.401
56.64	6.080	11.888	116.64	8.540	33.680
57.42	8.179	12.027	117.79	10.777	33.790
60.43	5.705	12.554	125.10	8.369	34.059
60.63	5.665	12.570	128.49	10.622	34.242
62.25	7.308	12.847	133.39	8.211	34.480
65.58	8.140	13.408	139.49	11.390	34.817
65.89	5.215	13.479	141.53	8.065	34.890
67.49	7.715	13.761	149.72	8.316	35.276
69.63	7.455	14.090	150.76	11.140	35.344
70.91	4.839	14.330	157.96	8.177	35.733
73.70	8.113	14.827	161.77	10.882	36.002
74.83	6.957	15.022	166.56	9.018	36.352
75.87	5.073	15.242	172.49	10.571	37.063
76.21	7.651	15.292			

trans-1,2-Dimethylcyclohexane

11.99	1.928	0.827	140.66	9.016	23.807
14.07	3.686	1.288	143.79	7.817	24.117
14.14	2.417	1.299	145.10	9.715	24.412
16.56	2.466	1.909	149.23	9.802	24.913
18.43	5.097	2.426	149.89	9.458	25.047
19.49	3.400	2.721	151.46	7.520	25.178
23.49	4.619	3.907	154.60	9.281	25.676
28.04	4.480	5.185	155.74	7.494	25.770
30.50	6.425	5.835	159.15	9.050	26.300
32.69	4.798	6.402	159.32	10.383	26.254
37.24	7.070	7.503	161.46	8.950	26.471
44.16	6.765	8.983	163.70	8.909	26.865
51.30	7.507	10.354	172.45	8.587	28.011
54.95	6.865	10.986		$144 i d$	
58.68	7.260	11.661	183.68	7.812	39.603
59.04	7.201	11.706	188.64	5.820	39.924
62.13	7.484	12.229	192.39	9.612	40.170
65.87	7.122	12.866	194.50	7.722	40.275
66.18	7.082	12.922	196.34	9.568	40.427
69.94	8.140	13.498	202.85	11.320	40.901
73.69	7.941	14.098	203.12	9.500	40.909
76.47	7.426	14.537	206.29	10.342	41.129
82.56	9.796	15.469	214.06	11.094	41.721
84.41	$8: 456$	15.771	216.54	10.153	41.908
92.09	9.278	16.960	225.05	10.875	42.596
92.54	7.792	16.998	227.05	10.863	42.757
94.33	7.947	17.223	235.81	10.655	43.515
100.62	8.381	18.157	237.80	10.645	43.678
101.05	8.553	18.202	246.36	10.435	44.487
102.03	7.440	18.347	248.33	10.425	44.639
102.05	10.654	18.377	256.68	10.221	45.504
110.76	10.021	19.592	258.65	10.215	45.678
111.52	9.868	19.737	266.80	10.021	46.519
113.25	11.735	20.037	268.76	10.003	46.749

120.46	9.376	20.972	275.91	8.188	47.521
121.07	9.244	21.108	278.67	9.802	47.818
124.56	10.893	21.587	284.83	9.657	48.488
129.58	8.867	22.222	288.37	9.611	48.892
130.92	10.451	22.418	293.61	7.899	49.497
135.13	10.241	23.044	297.89	9.421	50.019
139.17	10.317	23.550	301.44	7.770	50.453

cis-1,3-Dimethylcyclohexane

11.75	1.741	0.879	109.54	8.616	19.645
13.18	1.840	1.247	118.34	9.001	20.910
13.71	2.200	1.384	127.11	8.524	22.105
15.51	2.800	1.899	135.83	8.924	23.313
15.94	2.254	2.013	144.52	8.455	24.482
18.63	3.137	2.831	151.85	6.024	25.411
18.93	4.038	2.922	153.30	9.113	25.640
22.06	3.714	3.902	158.81	7.898	26.540
23.29	4.699	4.279	162.68	9.683	27.127
25.88	3.927	5.026	166.56	7.603	27.669
28.35	5.416	5.720	171.21	7.427	28.294
29.86	4.027	6.112	174.49	8.428	28.827
33.97	5.817	7.132	182.14	7.060	30.178
39.86	5.966	8.427		$1 . q u i d$	
45.87	6.039	9.582	204.19	5.433	41.042
51.93	6.095	10.690	206.28	7.229	41.212
54.44	6.603	11.122	211.37	8.930	41.562
55.68	5.640	11.344	214.36	8.916	41.738
58.06	6.157	11.752	220.67	9.655	42.277
61.37	7.246	12.305	230.66	10.331	43.076
61.73	6.477	12.396	240.88	10.120	44.076
68.22	6.491	13.442	250.91	9.925	45.003
68.85	7.720	13.536	260.73	9.719	46.025
75.01	7.102	14.499	263.29	9.646	46.295
76.35	7.281	14.715	270.35	9.525	46.972
82.38	7.624	15.674	272.84	9.464	47.213
84.14	8.291	15.954	279.79	9.363	47.992
90.09	7.805	16.853	282.22	9.295	48.240
92.67	8.780	17.243	289.14	9.326	49.054
98.18	8.374	18.028	290.93	8.122	49.268
101.14	8.165	18.463	298.31	9.015	50.029
106.45	8.157	19.221	299.48	8.982	50.157

trans-1,3-Dimethylcyclohexane

12.41	1.442	1.107	150.60	9.268	25.250
13.57	0.700	1.403	152.62	8.342	25.603
14.14	2.040	1.558	153.98	8.459	25.742
15.93	3.090	2.037	155.90	8.173	26.030
16.27	2.208	2.132	159.69	8.896	26.411
18.96	3.163	2.904	160.80	8.019	26.748
19.46	3.992	3.059	162.23	8.048	26.906
22.43	3.780	3.973	162.48	4.988	26.958
23.83	4.768	4.362	162.50	5.022	26.890
26.36	4.027	5.101	164.04	7.794	27.197
28.98	5.538	5.764	166.48	7.849	27.327
30.44	4.133	6.124	167.04	5.839	27.528
34.72	5.941	7.181	167.22	4.827	27.817
40.73	6.080	8.503	169.61	6.709	28.545
46.84	6.172	9.645	171.93	4.579	29.957
53.04	6.210	10.819		Liquid	
55.47	5.015	11.268	187.65	5.666	41.064
59.28	6.274	11.896	188.87	9.326	41.184
61.01	6.058	12.217	190.27	7.499	41.285
61.09	7.088	12.236	190.44	5.625	41.312

	Table II		(Continued)		$\underset{\substack{\text { cal. } \\ \text { deg. }}}{c_{1}}$
T, ${ }^{\circ} \mathrm{K}$.	ΔT	$\begin{gathered} c, ~ c a l \\ \text { ceg. } \\ \text { deg. } \end{gathered}$	T, ${ }^{\circ} \mathrm{K}$.	ΔT	
67.45	6.836	13. 299	190.76	9.281	41.260
68.32	7.373	13.422	190.79	9.276	41
4.72	7.690	14.447	194.52	7.462	41
75.81	7.607	14.596	196.97	7.434	41
81.95	6.783	15.602	198.64	9.24	41.774
. 52	7.800	15.836	202.86	9.203	42
88.98	9.325	16.682	208.72	10,904	42
89.48	8.164	16.763	211.61	8.310	42
91.41	7.992	17.044	219.52	10.700	43.327
97.30	7.588	17.906	220.23	8.930	43.
7.94	8.603	17.971	229.96	10.529	44.142
9.51	8.191	18.199	230.65	10.494	44
105.36	8.527	19.069	240.40	10.338	
106.75	9.016	19.246	241.04	10.289	45.091
107.63	8.057	19.352	250.64	10.145	45.928
113.48	7.708	20.214	250.69	9.011	45.
115.50	8.472	20.470	260.17	9.940	46.824
115.92	8.539	20.535	260,69	9.953	46
121.45	8.230	21.345	270.01	9.744	47.860
124.18	8.895	21.693	270.54	9.762	47.887
124.69	8.977	21.726	279.67	9.573	48.792
129.49	7.852	22.425	280.22	9.583	48.860
132.86	8.456	22.884	289.16	9.398	49.831
137.59	8.348	23.534	289.71	9.413	49.929
141.53	8.885	24.040	298.47	9.223	50.910
144.10	8.703	24.418	299.04	9.243	50.973
145.75	7.98	24			
cis-1,4-Dimethylcyclohexane					
29	1.655	0.942	119.37	8.29	20.9
22	2.012	1.158	127.47	7.912	22.0
14.21	2.206	1.406	135.62	8.389	23.127
15.70	2.972	1.813	144.62	9.602	24.323
. 44	2.291	2.016	154.01	9.159	25.526
18.84	3.320	2.723	162.72	8.044	26.520
. 17	3.178	2.836	167.92	5.775	27.331
22.73	4.482	3.942	173	5.611	28
27.31	4.312	5.288		Liquid	
27.38	4.810	5.312	189.49	5.527	41.663
32.11	4.663	6.588	193.18	5. 509	41.853
37.10	5.321	7.789	194.50	7.285	41.938
42.59	5.646	8.945	196.80	9.088	42.059
48.32	5.814	10.064	199.58	7.284	42.207
53.79	5.133	11.086	206.15	8.926	42.582
5.51	4.954	11.382	206.71	10.761	42.645
59.43	6.147	12.029	214.66	8.096	43.138
60.99	5.992	12.293	217,38	10.568	43.336
67.16	6.362	13.298	223:92	10.438	43.782
73.45	6.218	14.280	227. 87	10.400	44.072
79.23	5.386	15.212	234.28	10.277	44.518
80.14	7.152	15.320	238.17	10.213	44.877
85.28	6.711	16.132	248.30	10.039	45.700
87.43	7.421	16.468	258.24	9.846	46.614
92.54	7.818	17.214	268.39	10.453	47.624
94.98	7.682	17.557	277.25	7.267	48.479
100.66	8.414	18.341	278.44	9.474	48.556
102.96	8.29:3	18.679	285.57	9.366	49.313
108.97	8.398	19.510	287.52	8.695	49.532
111.17	8.113	19.832	294.85	9.201	50.302
117.73	9.300	20.700	303.22	7.536	51.

12.27	1.889	0.881	150.82	8.207	25.536
13.96	1.937	1.286	159.26	8.659	26.765
14.41	2.411	1.378	167.70	8.225	28.343
16.61	3.364	1.954	175.77	7.919	29.319
16.83	2.454	2.010	184.00	8.544	30.848
19.75	3.389	2.835	192.36	8.178	32.515
20.39	4.209	3.028	200.77	8.649	34.567
23.44	3.987	3.923	205.67	6.727	35.917
24.97	4.956	4.373	211.11	8.058	37.835
27.52	4.180	5.080	213.00	7.929	38.713
30.30	5.709	5.795	217.92	5.851	41.201
31.96	4.687	6.223	218.86	7.440	41.825
36.21	6.106	7.241	220.61	7.282	43.056
42.39	6.251	8.583	222.47	4.972	44.500
48.67	6.310	9.800	227.43	6.358	50.913
55.01	6.371	10.957	227.47	5.053	50.896
55.03	5.491	10.966	230.31	2.956	57.296
61.04	6.525	12.001	232.80	2.026	68.360
67.94	7.272	13.171	234.38	1.125	80.632
75.49	7.840	14.397	235.41	0.935	99.52
83.12	7.422	15.664	236.00	0.2504	300.5
90.68	7.695	16.873		Liquid	
98.52	7.970	18.036	242.16	5.494	44.787
102.99	7.609	18.662	244.77	7.224	44.961
105.54	6.064	19.071	248.52	7.238	45.358
106.24	7.482	19.173	252.83	8.901	45.656
110.38	7.185	19.764	262.09	9.619	46.501
112.14	7.163	20.103	271.63	9.453	47.448
119.63	7.824	21.139	281.00	9.289	48.395
127.73	8.372	22.282	290.21	9.127	49.370
135.03	6.242	23.311	299.25	8.965	50.391
142.44	8.563	24.358			

ties. The accuracy uncertainty may be considerably greater because of premelting and other effects.

Two of these compounds, 1,1-dimethylcyclohexane and cis-1,2-dimethylcyclohexane, had isothermal transitions of considerable magnitude. The transition temperature was studied in the usual way by observing the equilibrium temperatures corresponding to various fractions transposed. The transition temperatures are $153.15=0.05^{\circ} \mathrm{K}$. and $172.5 \pm 0.1^{\circ} \mathrm{K}$., respectively. Duplicate measurements were made of the heats of transition and these values are given in Table V.

The thermal data obtained over the temperature range 12 to $298.16^{\circ} \mathrm{K}$. were used to calculate the entropies of these compounds in the liquid state. The results of these calculations are summarized in Table VI.

In order to compare the experimental values with those obtained from theoretical considerations it is necessary to convert the experimental values to the hypothetical gaseous standard state of one atmosphere and $298.16^{\circ} \mathrm{K}$. This has been done using the data from the A.P.I. Research Project 44 tables 6 and the results are given in

[^0]| Table III | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smoothed Heat Capacties of $\mathrm{C}_{8} \mathrm{H}_{18}$ Alkylcyclohexanes, Cal./Deg./Mole | | | | | | | | |
| T, ${ }^{\circ} \mathrm{K}$. | Ethylcyclo- hexane | 1,1-dmch. | $\begin{aligned} & \text { cis-1.2-2 } \\ & \text { dmeh. } \end{aligned}$ | trans-1,2 | $\begin{aligned} & \text { cis-1.3- } \\ & \text { dmch. } \end{aligned}$ | $\begin{aligned} & \text { trans-1,3- } \\ & \text { dmch. } \end{aligned}$ | $\begin{aligned} & c i s-1,4- \\ & \text { dmch. } \end{aligned}$ | $\begin{gathered} \text { trans-1,4- } \\ \text { dmeb } \end{gathered}$ dmeh. |
| 12 | 1.12 | 0.98 | 0.89 | 0.83 | 0.94 | 1.01 | 0.89 | 0.82 |
| 13 | 1.36 | 1.22 | 1.14 | 1.04 | 1.19 | 1.26 | 1.11 | 1.04 |
| 14 | 1.62 | 1.48 | 1.38 | 1.27 | 1.46 | 1.52 | 1.36 | 1.28 |
| 15 | 1.88 | 1.76 | 1.63 | 1.51 | 1.75 | 1.78 | 1.62 | 1.54 |
| 20 | 3.31 | 3.27 | 3.06 | 2.87 | 3.27 | 3.22 | 3.10 | 2.91 |
| 25 | 4.79 | 4.78 | 4.52 | 4.34 | 4.78 | 4.72 | 4.63 | 4.38 |
| 30 | 6.18 | 6.12 | 5.87 | 5.71 | 6.15 | 6.02 | 6.03 | 5.72 |
| 35 | 7.47 | 7.30 | 7.11 | 6.97 | 7.37 | 7.24 | 7.30 | 6.96 |
| 40 | 8.64 | 8.32 | 8.20 | 8.11 | 8.46 | 8.36 | 8.42 | 8.08 |
| 45 | 9.72 | 9.24 | 9.21 | 9.15 | 9.42 | 9.30 | 9.43 | 9.10 |
| 50 | 10.74 | 10.09 | 10.15 | 10.11 | 10.34 | 10.26 | 10.38 | 10.04 |
| 55 | 11.68 | 10.90 | 11.06 | 11.01 | 11.22 | 11.18 | 11.28 | 10.96 |
| 60 | 12.56 | 11.68 | 11.91 | 11.87 | 12.08 | 12.05 | 12.14 | 11.82 |
| 65 | 13.38 | 12.47 | 12.74 | 12.72 | 12.92 | 12.88 | 12.95 | 12.68 |
| 70 | 14.16 | 13.24 | 13.54 | 13.52 | 13.72 | 13.70 | 13.74 | 13.50 |
| 75 | 14.92 | 14.01 | 14.34 | 14.30 | 14.50 | 14.49 | 14.53 | 14.32 |
| 80 | 15.68 | 14.76 | 15.15 | 15.08 | 15.30 | 15.28 | 15.30 | 15.14 |
| 85 | 16.41 | 15.51 | 15.92 | 15.84 | 16.08 | 16.07 | 16.10 | 15.96 |
| 90 | 17.12 | 16.25 | 16.68 | 16.58 | 16.84 | 16.84 | 16.85 | 16.76 |
| 95 | 17.80 | 16.98 | 17.41 | 17.32 | 17.57 | 17.57 | 17.57 | 17.52 |
| 100 | 18.46 | 17.70 | 18.13 | 18.06 | 18.30 | 18.28 | 18.27 | 18.26 |
| 110 | 19.79 | 19.18 | 19.52 | 19.48 | 19.72 | 19.71 | 19.67 | 19.72 |
| 120 | 21.10 | 20.66 | 20.91 | 20.91 | 21.16 | 21.12 | 21.03 | 21.19 |
| 130 | 22.42 | 22.14 | 22.26 | 22.28 | 22.55 | 22.50 | 22.38 | 22.60 |
| 140 | 23.73 | 23.66 | 23.55 | 23.66 | 23.88 | 23.86 | 23.72 | 24.01 |
| 150 | 25.04 | 25.21 | 24.81 | 25.00 | 25.26 | 25.23 | 25.02 | 25.42 |
| 160 | 26.36 | 33. $\overline{3} 97$ | 26.06 | 26.32 | 26.72 | 26.60 | 26.32 | 26.89 |
| 170 | 39.30 | 34.71 | -27.29 | 27.62 | 28.17 | 27.97 | 27.61 | 28.40 |
| 180 | 39.90 | 35.54 | -37. $\overline{27}$ | 28.89 | 29.66 | 29.33 | 28.90 | 30.08 |
| 190 | 40.54 | 36.39 | 37.99 | 40.00 | 31.14 | 41.25 | 41.69 | 32.02 |
| 200 | 41.22 | 37.29 | 38.76 | 40.68 | 40.76 | 41.91 | 42.24 | 34.36 |
| 210 | 41.97 | 38.27 | 39.56 | 41.40 | 41.46 | 42.62 | 42.84 | 37.40 |
| 220 | 42.77 | 39.29 | -40.38 | 42.18 | 42.21 | 43.37 | 43.51 | 42.64 |
| 230 | 43.62 | 40.40 | -43.64 | 43.00 | 43.05 | 44.15 | 44.25 | 56.44 |
| 240 | 44.52 | 43.83 | 44.48 | 43.87 | 43.97 | 45.00 | 45.00 | 44.60 |
| 250 | 45.48 | 44.79 | 45.38 | 44.82 | 44.92 | 45.88 | 45.86 | 45.44 |
| 260 | 46.46 | 45.80 | 46.32 | 45.82 | 45.92 | 46.84 | 46.78 | 46.32 |
| 270 | 47.49 | 46.85 | 47.28 | 46.88 | 46.96 | 47.82 | 47.75 | 47.28 |
| 280 | 48.56 | 47.94 | 48.29 | 47.96 | 48.02 | 48.85 | 48.75 | 48.29 |
| 290 | 49.68 | 49.05 | 49.35 | 49.08 | 49.14 | 49.95 | 49.79 | 49.35 |
| 298.16 | 50.62 | 50.01 | 50.24 | 50.05 | 50.04 | 5087 | 50.69 | 50.25 |
| 300 | 50.84 | 50.23 | 50.44 | 50.27 | 50.24 | 51.09 | 50.90 | 50.46 |

Table VII. The entropies calculated by Pitzer, et al., ${ }^{7}$ have been included for comparison.

Discussion

A number of interesting phenomena were noted in studying these compounds and will be discussed in the following section. As mentioned previously, cis-1;2-dimethylcyclohexane undergoes an isothermal transition at $172.5^{\circ} \mathrm{K}$. The rate of transition from the high temperature form (crystals II) of cis-1,2-dimethylcyclohexane to the low temperature form (crystals I) was extremely slow. The maximum rate of transition occurred

[^1]at a temperature 10 to 15° below the transition temperature. Even at this temperature, approximately one week was required to complete the transformation. Because of the slowness of the transition it was readily possible to supercool crystals II without any significant formation of crystals I. Consequently, heat capacity measurements were made on both crystalline forms from liquid hydrogen temperature up to the transition temperature, $172.5^{\circ} \mathrm{K}$.

A plot of the molal heat capacity of both crystalline forms is shown in Fig. 2. The most interesting part of the plot is the rapid rise in the heat capacity of crystals II at about $95^{\circ} \mathrm{K}$. This rapid change in the heat capacity over a short tempera-

Table IV
$\mathrm{C}_{8} \mathrm{H}_{16}$ Alkylcyclohexanes: Molal Heats of Fusion, Cal./Mole

Compound	-1	- Expt.	III	Mean ${ }^{\text {a }}$
Ethylcyclohexane	1992.0	1991.5		1991.7 ± 0.3
1.1-Dimethylcyclohexane	482.6	484.1	$483.6{ }^{\text {c }}$	$48.3 .4 \pm 0.8$
cis-1.2-Dimethylcyclohexane	393.5	392.9	392.9	$393.2=0.3$
trans-1,2-Dimethylcyclohexane	2507.4	2507.9		$2507.6^{\text {a }}=0.3$
cis-1,3-Dimethylcyetohexane	2587.2	2585,0		2586.1 ± 1.1
trans-1,3-Dimethylcyclohemane				2358^{6}
cis-1,4-Dimethyl- cyclohexane	2224.6	2225.9°	2222.7	$2224.4 \neq 1.7$
trans-1,4-Dimethylcyclohexane			$2947.2^{\text {d }}$

${ }^{6}$ In addition to this value three other expts. gave a value of 2490.8 ± 2.0 cal. $/$ mole. See text for discussion. ${ }^{b}$ See text for discussion of erratic values of heat of fusion. ${ }^{c}$ From melting point measurement. ${ }^{d}$ The rapid rise in heat capacity before the triple point precludes an accurate value for the heat of fusion, see text. eThese values are precision uncertainty.

Table V
Molal Heats of Transitron, Cal./Mole

	Compound	I	11
Cean	Mean		
1,1-Dimethylcyclobexane	1430.7	1430.0	$1430.3 \neq 0.4$
cis-1,2-Dimethylcyclohexane	1971.1	1975.7	$1973.4 \neq 2.3$

Table VI
Entropy Summary: $\mathrm{C}_{8} \mathrm{H}_{18}$ Alkylcyclohexanes, Cal./ Deg./Mole
Ethylcyclohexane

S_{12} (Debye, $4^{\circ}, \theta=95.25$)	0.398
$\Delta S_{12-181.84}$ (graphical)	27.909
$\Delta S_{\text {161. } 4.4}(1991.7 / 161.84)$	12.306
$\Delta S_{161.84-298.16}$ (graphical)	26.522
$S_{\text {288.16 }}$ (liquid)	67.135

1,1-Dimethylcyclohexane
S_{12} (Debye, $6^{\circ}, \theta=117.5$) 0.327
$\Delta S_{12-153.16}$ (graphical) $\quad 25.509$
$\Delta S_{153.16}(1430.3 / 153.15) \quad 9.339$
$\Delta S_{15 s .15-230.81}$ (graphical) 16.515
ΔS_{2016} (483
2.016
$\Delta S_{\text {n39.81-298.18 }}$ (graphical) 10.167
$S_{288.18}$ (liquid) 63.873
cis-1,2-Dimethylcyclohexane
Crystals II (Unstable Modification)
S_{12} (Debye, $4.5^{\circ}, \theta=90.4$) 0.519
$\Delta S_{12-172.50}$ (graphical) $\quad 37.852$
$S_{172.50} \quad 38.371 \cdot 38.371$
Residual entropy at $0^{\circ} \mathrm{K}$. 2.053
Crystals I, (stable modification)
S_{12} (Debye, $6^{\circ}, \theta=120.6$) 0.303
$\Delta S_{12-172.50}$ (graphical) $\quad 28.681$
$\Delta S_{172.50}(1973.4 / 172.50) \quad 11.440$
$\Delta S_{172.60-223.28}$ (graphical) 9.947
$\Delta S_{\text {s2L } 28}(393.2 / 223.28) \quad 1.761$
$\Delta S_{32.3 z-298.16}$ (graphical) $\quad 13.391$
$S_{898.16}$ (liquid)
65.523
trans-1,2-Dimethylcyclohexane

$S_{\text {t2 }}$ (Debye, $5^{\circ}, \theta=115.5$)	0.286
$\Delta S_{\text {12-184,99 }}$ (graphical)	30.502
$\Delta S_{\text {le.69 (}}(2507.6 / 184.99)$	13.555
$\Delta S_{14,99-298.16}$ (graphical)	20.959
$S_{\text {s88.16 }}$ (liquid)	65.302
cis-1,3-Dimethylcyclohexane	
S_{12} (Debye, $6^{\circ}, \theta=117.9$)	0.323
$\Delta S_{12-197.59}$ (graphical)	33.410
$\Delta S_{197.59}(2586.1 / 197.59)$	13.088
$\Delta S_{197.59-298.16}$ (graphical)	18.342
S988.16 (liquid)	65.163

trans-1,3-Dimethylcyclohexane
S_{12} (Debye, $5^{\circ}, \theta=107.90$) 0.349
$\Delta S_{12-183.06}$ (graphical) 30.89
$\Delta S_{183.06}(235.8 / 183.06) \quad 12.88$
$\Delta S_{183.06-298.16}$ (graphical) 21.91
$S_{298.16}$ (liquid) 66.03
cis-1,4-Dimethylcyclohexane
S_{12} (Debye, $6^{\circ}, \theta=121.15$) 0.299
$\Delta S_{12-186.73}$ (graphical) $\quad 31.169$
$\Delta S_{\text {ls5 } 73}(2224.4 / 185.73) \quad 11.977$
$\Delta S_{185.73-298.18}$ (graphical) 21.359
$S_{298.16}$ (liquid) 64.804
trans-1,4-Dimethylcyclohexane

S_{12} (Debye, $5^{\circ}, \theta=114.67$	0.292
$\Delta S_{12-235.22}$ (graphical)	40.350
$\Delta S_{236622}(2947.2 / 236.22)$	12.476
$\Delta S_{236.22-288.16}$ (graphical)	10.944
$S_{298.16}$ (liquid)	64.062

Table VII
Molal Entropy at $298.16^{\circ} \mathrm{K}$., Cal. Degree ${ }^{-1}$ Mole ${ }^{-1}$

Substance	Experimental		Calcd.
Llg.	Vap.	Vap.	
Ethylcyclohexane	67.14	91.46	91.44
1,1-Dimethylcyclohexane	63.87	87.22	87.24
cis-1,2-Dimethylcyclohexane	65.52	89.47	89.51
trans-1,2-Dimethylcyclohexane	65.30	88.75	88.65
cis-1,3-Dimethylcyclohexane	65.16	88.72	88.54
trans-1,3-Dimethylcyclohexane	66.03	89.96	89.92
cis-1,4-Dimethylcyclohexane	64.80	88.64	88.54
trans-1,4-Dimethylcyclohexane	64.06	87.45	$\mathbf{8 7 . 1 9}$

ture interval is very similar to that behavior which is characteristic of organic glasses. A similar case was observed by Kelly ${ }^{8}$ in his investigation of cyclohexanol, i.e., the unstable crystals II could be easily supercooled to liquid hydrogen temperature and showed the glassy bump.

Since crystals II have a low heat of fusion, 393 cal. per mole, and a high heat capacity, about 6% less than that of the liquid at the melting point, it seems reasonable to postulate that the molecules are free to rotate in the lattice. However, as the material is cooled it is possible that the restrictions to rotation become greater and a major part of the rotation is frozen in a short temperature interval, thereby causing the rapid change in the
(8) K. K. Kelley, This Jovminal, 51, 1400 (1929).

Fig. 2,-Heat capacity curves for the two different forms of cis-1,2-dimethylcyclohexane.
heat capacity. When crystals II were rapidly cooled and maintained under adiabatic conditions for a long period of time at a temperature about 10° below that of the rapid rise in heat-capacity curve, heat was evolved. This liberation of energy could be associated with the decrease in the energy of the crystals as the molecules reorient themselves toward equilibrium positions in the crystal lattice.

Since heat-capacity measurements were made on both crystalline forms from liquid-hydrogen temperature, the entropy of crystals II was calculated graphically at $172.5^{\circ} \mathrm{K}$. over two different paths. These calculations showed the super-cooled crystals II to have a residual entropy of $2.06 \mathrm{E} . \mathrm{U}$. at $0^{\circ} \mathrm{K}$. Since cis-1,2-dimethylcyclohexane is a mixture of d and l forms, a part of this residual entropy can be explained if it is assumed that crystals II is a solid solution of the d and l forms that persist to $0^{\circ} \mathrm{K}$. Thus the value for the entropy of mixing, $50-50$ mixture, which is $R \ln 2$ would account for 1.38 E.U. of the observed residual entropy. This leaves approximately 0.6 E.U. unaccounted for and it is possible that imperfect orientation of the molecules is responsible for this difference. However, since there is no positive evidence that a solid solution is formed, it is possible that all of the residual entropy is due to the randomness or disorder of the rapidly cooled crystals.

The trans-1,4-dimethylcyclohexane heat-capacity curve, as shown in Fig. 3, has an unusually rapid rise in the temperature region below the melting point. The highest experimental heatcapacity point has an approximate value of 300
cal. $/$ mole at $236.0^{\circ} \mathrm{K}$. It was first thought that this rapid rise in the curve was due to premelting. However, from the melting point studies, the amount of impurity was calculated to be 0.007 mole per cent. on the assumption that the system obeys Raoult's law. The premelting effect due to this amount of impurity would change the molal heat capacity only 0.1 or 0.2 cal. $/ \mathrm{deg}$. at $236.0^{\circ} \mathrm{K}$., which is insignificant as compared to the magnitude of the experimental value observed. Hence, the unusually steep slope of the curve cannot be due to premelting.
It appears unlikely that the observed behavior is associated with an impurity and hence it is believed that it is characteristic of the material and may be explained as follows. Since the shape of the curve is similar to the low temperature side of a lambda point we can assume that a second order transition started but melting took place before the transition was completed.

Egan and Kemp ${ }^{9}$ observed a similar effect in the heat-capacity curve of ethylene and explained it in a like manner.
will not be greatly affected in the absolute sense and the reliability of the results will depend principally on how closely the system obeys Raoult's law.

In the study of trans-1,2-dimethylcyclohexane four measurements of the heat of fusion and two melting-point determinations were made. The heats of fusion fell into two internally consistent groups which appeared to be related to the manner in which crystallization was initiated. If the liquid material was cooled rapidly to about $85^{\circ} \mathrm{K}$. and crystallization was initiated by slowly heating the undercooled liquid, crystals were obtained which gave the high heat of fusion. However, if crystallization was initiated by allowing the liquid to cool slowly across the vacuum and crystallization to take place spontaneously, crystals were obtained which gave the lower value for the heat of fusion. Melting-point studies were made on crystals obtained by both of these inethods. These data gave melting points (for pure material) which differed by only 0.006° which is not a very large difference but greater than the expected error of the measurements. The higher melting point was associated with the material having the lower heat of fusion. If it is assumed that there are two crystalline forms of this material, the above data show that the high melting form, although the stable form at its melting point, will have to become the unstable modification at some lower temperature. Furthermore, if both forms obey the third law, the high-melting form, with the low heat of fusion, will have to have a higher heat capacity in some portion of the temperature range or will have to undergo a transition in order to gain the necessary entropy. Our measurements show that above $90^{\circ} \mathrm{K}$. the high melting form does have the higher heat capacity by a small but significant amount. In the temperature range 50 to 90° the heat capacity of the two forms are identical within the experimental error. Assuming the postulate of two crystalline forms is correct, the entropy was calculated over the two paths and found to differ by only 0.04 cal./degree which is within the experimental error.
This explanation is substantiated further by an
unpublished investigation made in this Laboratory on ethylcyclopentane in which were found, very definitely, two crystalline forms with melting points differing by 0.7°, the stable high-melting form having the lower heat of fusion by approximately 170 .cal./mole. The high-temperature form has the higher heat capacity over the entire temperature range from 12° to the m. p. and the entropies over the two paths are identical.

In the case of trans-1,3-dimethylcyclohexane it was found impossible to obtain a satisfactorily reproducible value for the heat of fusion. A great many experiments were tried in which the method of crystallizing was varied as widely as was experimentally convenient. At this time it is not possible to explain the reason for the observed behavior of this material. However, the authors are inclined to believe that it is probably due to a very slow rate of crystallization as the crystallization approaches completion. Because of the above effect, the thermal data on this compound are nuluch less reliable than is characteristic of data from this Laboratory. The value for the heat of fusion given in Table IV is the highest value observed but not necessarily the correct value. The value of the entropy calculated from these data will also be less reliable than usual.
'Table VII shows that the experimental and calculated values ${ }^{6}$ of the entropies are in excellent agreement when the old labels on cis and trans-1,3dimethylcyclohexane are interchanged as proposed by Pitzer and Beckett. ${ }^{10}$

Summary

The heat capacities of eight $\mathrm{C}_{8} \mathrm{H}_{18}$ alkyl cyclohexanes have been given over the temperature range 12 to $300^{\circ} \mathrm{K}$.

Melting points, transition temperatures, heats of fusion, and heats of transition for these compounds have been given.

Entropy values have been calculated for the liquid and gaseous state at $298.16^{\circ} \mathrm{K}$.

Received August 30, 1948

[^2]
[^0]: (6) Selected Values of Properties of Hydrocarbons, Circular of the Netional Bureau of Standards C 481 , p. 172.

[^1]: (7) C. W. Becket, K. S. Pitzer and R. W. Spitzer, This Journal, 69, 2488 (1948).

[^2]: (10) K. S. Pitzer and C. W. Beckett, Thif Journal, 69, 977 (1947): F. D. Rossini and K. S. Pitzer, Science, 105, 647 (1947).

